Microbial electrosynthesis of butyrate from carbon dioxide.

نویسندگان

  • R Ganigué
  • S Puig
  • P Batlle-Vilanova
  • M D Balaguer
  • J Colprim
چکیده

This work proves for the first time the bioelectrochemical production of butyrate from CO2 as a sole carbon source. The highest concentration of butyrate achieved was 20.2 mMC, with a maximum butyrate production rate of 1.82 mMC d(-1). The electrochemical characterisation demonstrated that the CO2 reduction to butyrate was hydrogen driven. Production of ethanol and butanol was also observed opening up the potential for biofuel production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplifying microbial electrosynthesis reactor design

Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membran...

متن کامل

Molecular Mechanisms for the Biological Storage of Renewable Energy

Recent and ongoing discoveries in the field of extracellular electron transport offer the potential to electrically power highly flexible, carbon-fixing microbial metabolisms and generate a rich variety of chemicals and fuels. This process, electrosynthesis, creates the opportunity to use biology for the low cost storage of renewable electricity and the synthesis of fuels that produce no net ca...

متن کامل

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appe...

متن کامل

Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms.

Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has b...

متن کامل

Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 51 15  شماره 

صفحات  -

تاریخ انتشار 2015